Solar-Renewable Energy

Is Your Community Ready for Solar Energy

By Eric Zweber, Sr Project Manager and Amy Fredregill, Sr Director of Sustainability, WSB

Solar energy systems, such as solar panel arrays, are becoming increasingly less expensive to install and are generating more energy than before. The lower initial investment is resulting in a shorter time required for the savings on your city’s electricity bill to cover the initial cost of installation. In the long run, solar energy systems save money, generate jobs, and provide clean energy to your citizens. The low maintenance costs, economic stimulation and many other benefits make solar energy a strong option.

Here are four things to consider when exploring solar energy options for your city:

  • How do your citizens, businesses and other stakeholders feel about climate and renewable energy? How do you expect that to change in the future?              
    • Renewable energy options may be one way to advance your community’s climate and sustainability goals and interests, while meeting the needs of a range of stakeholders.
  • Does your electricity provider have a green tariff, green power program, or net energy monitoring program?
    • These programs partner with cities and businesses to provide the best value for renewable energy. Exploring which options your electricity provider may have can save on cost, and ensure you are maximizing your resources.
  • Is increasing awareness and education a goal of your energy program?
    • If so, onsite solar generation can have an even stronger business case due to the local visibility it provides.
  • How will investment tax credits (ITCs) and solar renewable energy credits (SRECs) be capitalized within your project investment?      
    • Municipalities can have difficulties recovering incentives such as ITCs and SRECs. Exploring potential partnerships prior to installation can create funding opportunities to shorten your payback period.

Every solar energy solution looks different. For community leaders facing challenges and planning for the future, it can be difficult to know when and where to start. When we partner with clients, we help them explore what opportunities their community can tap into for solar energy considerations.

Eric has over 20 years experience with community planning, renewable energy, and sustainability projects. He has worked cooperatively with a number renewable energies developers to develop both solar and wind resources and is a past board member of the Minnesota Solar Energy Industrial Association (MnSEIA). He has a passion for sustainable and resilient practices to address the needs of communities and larger public.

ezweber@wsbeng.com | 612.581.0504

Amy has over 20 years of experience across many industries, particularly energy and agriculture, in the public, private and nonprofit sectors. This experience has provided Amy with a broad background that enables her to meet community and business needs based on the business case for sustainability. By working across intersecting systems to simultaneously advance environmental, economic and social goals, she is able to uncover creative solutions.

afredregill@wsbeng.com | 612.965.1489

Evaluating Solar Panel Effects on Wetlands

By Shawn Williams, Sr Environmental Scientist, WSB

Wetlands are vital and dynamic ecosystems that provide numerous benefits to society, including improved surface water quality, flood control, groundwater recharge, and of course wildlife habitat. Wetlands are regulated aquatic resources in the state of Minnesota.

The Wetland Conservation Act (WCA) ensures that all wetlands that are disturbed, brought into non-aquatic use, or its function and value are significantly altered are restored or replaced. In the past, the posts/pilings that are used to install solar arrays have not been considered a wetland impact that would require compensatory mitigation under the WCA. The reality is that solar arrays bring wetlands into non-aquatic use and may, or may, not negatively impact the wetland’s quality or function.

Historically, solar arrays have been sited within or near farmed wetlands (wetlands that are plowed).  If solar developers restore the disturbed wetlands following construction, such as with native plant species, the function and value may actually improve, despite the shading from the solar arrays.

To help local governments evaluate the potential impacts to a wetland’s function and value, the Minnesota Board of Water and Soil Resources (BWSR) issued guidance that provides a suggested approach for evaluating projects when they involve the installation of solar panels on posts/pilings in wetlands.

The guidance document can be found on the BWSR website and includes three steps:

  1. Evaluate the wetland’s condition
  2. Determine the wetland’s current functionality, and
  3. Evaluate the effect of the project on the condition and function of the wetland

WSB’s experienced Natural Resources staff are available to assess wetlands to determine the general quality and function/value they provide to the ecological setting and society. The regulatory review and technical assessment will determine if the project wetland impacts require replacement.

Please contact Shawn Williams at 612-360-1305 or swilliams@wsbeng.com for additional information or project support.

Shawn has over 16 years of professional environmental consulting experience. He prepares site permit applications, avian surveys, wetland delineations and reports, habitat assessments, and threatened and endangered species reviews. He is trained in wetland delineation methods, wetland plant identification, floristic quality assessment methods, NPDES compliance, and Geographic Information Systems (GIS).

swilliams@wsbeng.com | 763.287.8531

Solar Utility Micro-Grading

By Jeff Sandberg, Sr. Project Manager, WSB

WSB’s Renewable Energy Solar team continues to innovate in the industry and expand our expertise. Most recently we developed a system to quickly and efficiently analyze and compare solar site grading costs. Even a 6” cut or fill across a large site can result in substantial costs making a site less attractive, or impractical, for a developer. Analyzing rows and rows of solar panels conventionally has been tedious and time consuming. Our new, automated CAD processes makes the analysis more efficient and cost-effective.

Methodology

The automated processes uses Civil3D. It allows the user to input tolerances from different panel types and desired racking lengths to generate a proposed grading surface. The system produces a thematic mapping of grading cut and fill quantities for areas within the array footprint on a micro level.

Analysis & Results

As solar developers know, site grading costs can make or break a project. Being able to quickly and efficiently apply this technology to small and large sites allows a developer to compare, evaluate and determine which sites are most cost-effective from a grading standpoint. We can further refine array layouts to efficiently and cost-effectively fit within the site terrain, minimizing the amount of site grading required.

Similar technology takes structural pile plans and produces a plan and point file of X, Y, and Z coordinates. That information can be downloaded to the surveyor, in the field, to pinpoint the exact location and elevation of each individual pile in a project, anything from 1 MWac sites to 500 MWac sites and larger. 

Geography

As a national company, WSB can apply this process to any site around the country. Our Renewable Energy team has worked on renewable energy projects across the country and can provide a full set of services for solar projects; services include, but are not limited to, Critical Issues Analysis (CIA), Engineering and Site Planning Approvals, Construction Surveying, and Geotechnical Services.

What’s next?

WSB continues to develop techniques and solutions to ensure the success of client projects. From Site Selection software to automated Micro-Grading Analysis, WSB continues to innovate and lead the Renewables market.

Jeff is a licensed Civil Engineer and Senior Project Manager at WSB. He has over 26 years of engineering experience in the areas of municipal, commercial development, and consulting engineering. Jeff has worked with many municipalities and has a wealth of experience in working with local, State, and Federal permitting authorities.

Solar Development and Wetland Regulation

Roxy Robertson, Environmental Scientist, WSB

Solar production in Minnesota has seen dramatic increases in the past few years and continues to grow across the state. With this rapid growth comes challenges about how to regulate the installation of panels at a local level. According to the Solar Energy Industries Association (SEIA), Minnesota has already invested $1.9 billion on solar and additional growth is projected at 834 megawatts over the next five years. The installations of solar “farms”, vast arrays of solar panels, can be seen throughout the state and can generate up to a megawatt of electricity each. Development of these sites often requires large, vacant parcels which may also support natural habitats such as wetlands.

The development application process for these solar farms can be challenging for municipalities, especially those who act as the local government unit (LGU) for the Wetland Conservation Act (WCA). Developers must work collaboratively with LGUs to demonstrate a sequencing process that shows how their projects are avoiding, minimizing, and if necessary, replacing unavoidable wetland impacts. Under the WCA rule, the installation of posts and pilings from solar panels has traditionally not been considered a wetland impact if they do not significantly alter the wetland function and value. But, as the solar industry grows, LGUs have had questions about whether the installation of solar panels may lead to loss in wetland quality over time which would be a violation of WCA. A strong measure of wetland quality comes from the diversity of the plants within the wetland, factors like shading from panels and disturbances from construction may lead to conversion of the wetland vegetative community, and subsequently, the wetland quality. Loss of wetlands and wetland quality has overlapping effects on drinking water, lake and stream health, native wildlife, soil heath, and pollinators, all of which are important to our Minnesota ecosystems.

So why does this affect you? Many municipalities act as the LGU responsible for implementing WCA. LGUs, alongside other regulating agencies, have been struggling to make impact determinations for sites that install panels in wetlands because there is little data available that addresses the future outcomes of these natural areas. There is a growing need for baseline data about how the quality of wetland vegetation changes throughout the solar development process. If data were available, LGUs could use these as a basis for making determinations.  

Having baseline data about wetland vegetative quality under solar panels is beneficial to both regulators and developers. Regulators will have a scientific basis for making wetland impact determinations within their jurisdiction and developers will see more consistency across municipalities during the permitting process. We may see that wetland quality improves under solar panels in certain circumstances through the planting of native vegetation upon completion of development. In other scenarios, wetland quality may decrease if the existing wetland was of higher quality prior to development.

WSB has started an exciting initiative to collect this baseline data at various solar sites in Minnesota. In 2019, environmental scientists at WSB surveyed wetland vegetation under existing or planned solar panels at four solar farms in varying stages of development. Additional data collection at these sites is planned for the summer of 2020. WSB is in the process of developing a Legislative-Citizen Commission on Minnesota Resources (LCCMR) grant application to expand this research in 2021 to more sites across the state and to include other metrics that may influence vegetation such as fixed-tilt or tracker panel types. Support of this research from municipalities will be important for the LCCMR application process and we encourage you to join us in the process through letters of support, in-kind hours, monetary support, or providing access to solar farms within your area. It is an exciting time in the renewable energy industry and WSB is committed to helping advance the clean energy market in a way that is sustainable to our Minnesota environment that we all cherish.

Roxy is an environmental scientist and certified wetland delineator. She has a master’s degree in ecology and is a Certified Associate Ecologist. She has completed numerous wetland delineations and has experience with wetland monitoring, ecological restoration design, environmental site assessments, field research, biological surveys, ArcGIS mapping, and GPS Trimble.

Effects of Solar Gardens on Vegetation

Roxy Robertson, Environmental Scientist, WSB

Uncovering the potential issue

In the past few years, there has been a push to utilize renewable energy resources. In Minnesota and other states, there has been legislation to require some of this renewable energy to come from solar. According to the Solar Energy Industries Association (SEIA), Minnesota ranks 13th in the nation for megawatt production, producing 1,140 MW of energy from solar. This push for solar has resulted in the development of small-scale and community solar gardens which construct panels across a variety of landscapes, including low-lying wetland areas. 

In Minnesota, there are rules and regulations for impacts to wetlands that include regulations surrounding the placement of a structure in a wetland. These rules are outlined in the Wetland Conservation Act (WCA). The WCA allows the construction of some panels in wetland areas depending on the type of impact, but regulation of these impacts is highly variable throughout the state due to lack of specific language regarding whether solar panels truly cause wetland impacts. There are opinions that suggest that the installation of solar panels within wetlands affect the quality of the wetland vegetation under the panels over time. In addition to these regulations, the Board of Water and Soil Resources (BWSR) also has standards that encourage developers of solar fields to plant vegetation that benefits pollinators.

Currently, there isn’t any research that explores the direct impact of solar panels on wetland vegetation. From small community solar gardens to large utility scale solar gardens, the energy generated can benefit communities, but what is the impact on the underlying vegetation? If solar panels are placed in a degraded wetland such as a farm field, would the installation of panels and native seed mixes improve the quality of wetland vegetation?

Where is the research?

The lack of research explaining direct impacts that solar installations have on vegetation is a challenge for scientists and engineers. Through communication with regulators and developers, we have discovered there is room for growth and study in this area, and it is a topic that needs continued exploration. This data gap has led us to develop our own vegetation studies at community solar gardens. This data is imperative if we are to continue to rely on solar energy resources. Without current guidelines that outline negative or positive effects, we are unsure of the long-term overall environmental impacts to vegetation quality under solar panels, which in turn affects the quality of natural habitat and functional benefits provided by the landscape. How do energy companies know if they are impacting the environment that surrounds solar gardens? Pursuing funding for extensive research has been challenging for those who are curious about the effects of installation of solar technology on surrounding vegetation. Even after preliminary research, many questions remain surrounding the shading of solar panels and vegetation, direct impacts, and long-term effects.

What does this mean for the future?

SEIA projects that Minnesota’s solar energy consumption will grow by 845 megawatts within the next five years. Financial support to continue this research is necessary and will allow scientists to uncover data at solar sites that does not yet exist. With this data, we can better understand the environment, impact of projects on vegetation, and develop tools to distinguish impacts. Developers looking for land will better understand the risks involved when building a solar garden on or near a wetland. As need and desire for renewable energy increases, more energy companies will implement solar. However, if we are not aware of the impacts solar gardens have, how will we know if there is an additional cost to the environment? Knowing areas to avoid allows companies to be certain of regulations, save time and money, and limit impacts to surrounding wetlands. We are continuing to complete research to better understand the impacts and benefits of solar arrays on underlying vegetation. 

Roxy is an environmental scientist and certified wetland delineator. She has a master’s degree in ecology and is a Certified Associate Ecologist . She has completed numerous wetland delineations and has experience with wetland monitoring, ecological restoration design, environmental site assessments, field research, biological surveys, ArcGIS mapping, and GPS Trimble.