By Paul Kivisto, P.E., Senior Structural Engineer, WSB

Did you know that the average life span of a bridge is 60 – 70 years? There are a number of ways to reach or exceed that average. Newer materials like high performance concrete and epoxy/stainless steel rebars certainly improve the quality and longevity of a bridge. Regular bridge inspections are not only legally required, but by inspecting and documenting issues with your bridges you can hopefully slow the expected deterioration and make repairs early which often costs less.

MnDOT, counties, cities, townships, and tribal governments are all responsible for managing bridge assets within their jurisdiction. Many of these entities have inspectors on staff to perform inspections, while others contract out that work to private firms like WSB. Maintaining regular and accurate inspection data is necessary to ensure public safety, reduce liability, maintain accurate budgeting, and comply with state laws and regulations.

Five important aspects of bridge inspections

About Documents, Frequency, and Inspection process

MnDOT releases the Bridge and Structure Inspection Program Manual (BSIPM) which summarizes inspection guidelines. In Minnesota, all bridges and culverts over 10’ long and carry traffic or are over roadways must be inspected. An initial inspection is required within 3 months of opening to traffic. The typical inspection frequency is 24 months, with shorter time periods for bridges in poor condition. The bridge owner can request longer than 24-month cycle for culverts. The latest version is May 2021 and can be viewed here: https://www.dot.state.mn.us/bridge/inspection.html.  

Bridge Condition Codes

BSIPM Chapter B – Bridge Inspection Field Manual and Chapter D – Recording and Coding Guide should be used by inspectors during all inspections. Physical condition and geometric properties of each bridge are recorded on inspection and inventory forms.

  • Overall condition codes from the National Bridge Inventory (NBI) range from 9 (new) to 0 (closed) and track the overall condition of the superstructure, substructure, deck, culvert, and other elements.
  • More detailed element level inspections record percentages of elements in conditions ranging from 1 (new) to 4 (severe deterioration).

The owner must report inspection and inventory data through the Structure Information Management System (SIMS) database to MnDOT every year.  MnDOT in turn provides the data to the Federal Highway Administration (FHWA).

Channel Inspections/Waterway/Scour

One of the leading causes of bridge failures is scour or undermining of the substructures in, or adjacent to, water. Scour is the term used to describe the erosion of soil surrounding a bridge’s foundation. When fast-moving water moves sediment from around the foundation, it creates scour holes adjacent to substructures that must be identified and monitored. Degradation of channels can cause shifts in the channel and may increase the risk of undermining. Bridges that cannot be inspected by wading and probing must be included in the statewide underwater inspection program on a 48-month cycle. Channel cross-sections are required for scour critical bridges and recommended for unknown foundations and scour susceptible bridges.

Additional causes of bridge deterioration to be aware of include:

  • Rebar and steel corrosion due to chlorides
  • Delamination and spalling on concrete members
  • Shrinkage cracking in concrete
  • Fatigue cracking on steel beams
  • Vehicle impacts to members
  • Leaking expansion joints
  • Bearings moved out of position
  • Timber decay

Drone Inspections

Increasingly, drones are used to provide access to hard-to-reach portions of bridges. They have photographic and video capabilities that allow them to identify cracking, spalling, and other deterioration that is otherwise challenging to document. Drones have the additional benefit of using Infrared (IR) cameras to identify delamination and distress below the surface.

Engaging with the Inspection Data

Agencies should use inspection data to help identify maintenance, preservation, improvement, and replacement projects. It is critical that accurate inspection data be maintained to track deterioration over time and prioritize maintenance work. Additional detailed inspections may be needed to help put together a system-wide scoping analysis or bridge management plan (BMP).  A thorough BMP can help identify funding needs over a given budgetary cycle.

Paul has more than 36 years of experience in bridge construction, bridge management, bridge inspection, and bridge design. In his role as Metro Region Bridge Construction Engineer for MnDOT’s Bridge Office, Paul was responsible for writing foundation recommendations, bridge preservation and improvement recommendations, constructability reviews, recommended repairs, and identified projects for inclusion in MnDOT’s bridge preservation program.

[email protected] | 612.201.9163

By Robert Slipka
Feb. 6, 2015

Integrated design brings together a diverse team of design professionals on one project. Projects benefit from this approach because a wider range of experts is contributing throughout the project as a team, rather than acting independently.

Early integration is crucial to reduce the potential for expensive conflicts as design progresses or implementation begins. The integrated design approach involves all parties, including design professionals, clients/owners, permitting agencies, and others. Involvement may also include cost analysis specialists, construction managers, and contractors.

No matter what that project type, an integrated approach helps ensure a holistic outcome rather than a culmination of interdependent elements. Below are two examples of what teams could look like.

Example 1

A site development project is led by a landscape architect or civil engineer with direct integration of specialists such as environmental scientists, ecological specialists, engineers, building architects, electrical engineers, irrigation designers, and the client (including their operations and maintenance staff).

Example 2

A roadway corridor project is led by a transportation engineer and/or a planner. The team for this type of project may integrate urban designers/landscape architects, engineers, environmental scientists, right-of-way specialists, and representatives from numerous government agencies.

Design charrettes and brainstorming sessions are often utilized heavily in the beginning phases of project planning and design. This helps the team identify key goals, strategies, and desired outcomes of the project while also establishing areas of conflict or design implications. Including a diverse range of professionals means a better likelihood of achieving creative solutions that might not be explored in a conventional, non-integrated approach. As the project develops into the construction documents phase, continued collaboration is required to ensure compatibility of spatial character, uses, spaces, materials, and other factors. This approach can also identify conflicts that might not otherwise be identified until late in design or into construction, avoiding unanticipated costs or redesign.

Although an integrated approach provides better results, it is important for consultants and clients to judge how extensively integration needs to occur based on costs and benefits. Some projects are smaller in scale or fee, which can make an elaborate integrated approach difficult to justify. Clients should also be aware that the term “one-stop shop,” often utilized to describe multi-disciplinary firms, does not necessarily mean that an integrated design approach is used for projects. If it is unclear or unproven, clients should ask the consultant to describe how the various team members will be integrated throughout the design process. The ultimate goal is to achieve higher quality projects with increased cost effectiveness to clients.

by WSB Municipal Engineering
Dec. 22, 2016

What legal responsibilities do bridge owners have?

Any municipality that owns a bridge in Minnesota must appoint a bridge program administrator. This administrator needs to be a professional engineer with a bridge background, as they are responsible for ensuring their bridges are inspected, load rated, and load posted (if required) according to state and federal law.

What does a bridge safety inspection involve?

A bridge safety inspection is an evaluation of the physical condition of a bridge. The inspection involves a visual and hands-on evaluation of all bridge components. The inspector looks for issues such as corrosion, deterioration, settlement, damage, or scour, and the results are detailed in a report based on each component. Following a bridge safety inspection, the overall condition of the bridge is compiled in an online database. Bridges are required by law to be inspected either annually or biannually, depending on the bridge type and condition. Special inspections such as an underwater inspection may also be necessary for bridges with components that are not visible during low water conditions.

How does a bridge owner know when it is time to replace a bridge?

The answer to this question varies based on the volume and type of traffic over the bridge. Bridges should always be replaced before the safety of the traveling public is at risk. Every bridge is assigned a sufficiency rating score, which varies from 0-100 and factors in the condition of the bridge, traffic volume importance of the route, and load carrying capacity. A bridge’s sufficiency rating is used to determine when it should be replaced and when it qualifies for funding. Bridges are also replaced when they are no longer able to meet traffic needs. Bridge owners can significantly extend the life of bridges by performing routine maintenance such as painting, cleaning, and crack sealing.

What is a bridge load rating?

A bridge load rating is a calculation that determines the safe load carrying capacity of a bridge. Bridge load ratings are based on the original capacity of the bridge while factoring in any deterioration or changes to the bridge’s condition that have occurred over time. A bridge load rating calculation is required when the bridge is first constructed and whenever the condition or configuration of the bridge has changed. The results determine if a bridge should be load posted and if it is safe for special permit vehicles to cross the bridge.

Glossary

  • Load Rating: A calculation to determine the safe load carrying capacity of a bridge.
  • Load Posting: Restricting the weight of vehicles that cross a bridge in order to prevent overloading.
  • Sufficiency Rating Score: A numerical value on a scale of 0-100 that considers a bridge condition, traffic volume importance, and load carrying capacity.

Co-authored by Jay Kennedy and Diane Hankee.

The text of this article contains general information and is not intended as a substitute for specific recommendations. Your professional staff is more familiar with your community and can provide specific recommendations. Guidelines and regulations change and may be different from when this article was published. 

By Brandon Movall
Aug 1, 2016

With the state of America’s infrastructure declining due to climate change and limited funding, today’s engineers and scientists must adopt creative and sustainable solutions. In 2011, the American Society of Civil Engineers (ASCE), the American Council of Engineering Companies (ACEC), and the American Public Works Association (APWA) came together to revolutionize the way engineers plan, design and build. The result was Envision, a holistic rating system for sustainable infrastructure.

Envision is a rating system to help project teams incorporate higher levels of sustainability at each step of a project, from assessing costs and benefits over the project lifecycle to evaluating environmental benefits and using outcome-based objectives. Envision considers social, environmental, and economic factors of projects (a process called the Triple Bottom Line), rather than only focusing on economic factors. Envision uses a scorecard of 60 credits divided into five categories that reflect all aspects of the Triple Bottom Line:

  • Quality of Life
  • Leadership
  • Resource Allocation
  • Natural World
  • Climate and Risk

By tallying the credits achieved throughout the project lifecycle, Envision is able to effectively rate proposed infrastructure options in a way that is easy to communicate to clients, consultants and owners.

While there are many sustainability rating systems out there, there are a few things that make Envision the best option:

  1. Envision rates all types of civil infrastructure, such as transportation, water, energy, information, and landscape infrastructure.
  2. Envision covers the entire life cycle of a project, from the first meeting of the project team to post-construction maintenance.
  3. Envision is free to use. Anyone can sign up for an Envision account and have access to the guidance manual and scorecard. The only costs involved are if a project is registering for awards through Envision, or if you want to get special training and become an Envision Sustainability Professional (ENV SP). These are optional and are not necessary to use the Envision system on a project.

In addition to individual users, many companies and public agencies across the United States have implemented Envision into their planning, design and construction processes. Benefits to a company or agency include discounted ENV SP certification rates, discounted project award registration rates, exclusive content from the founding organizations, and more. As part of our commitment to bettering ourselves, our clients, and our world, WSB is proud to be recently certified as an Envision qualified company.

To change the world, we must change our practices. Envision is one large step toward planning, designing and building a sustainable future. For more information about Envision in general, visit www.sustainableinfrastructure.org. For more information about Envision at WSB, please contact Katy Thompson, Brandon Movall, Stephanie Hatten, or Ann Wallenmeyer.

References:

“2013 Report Card for America’s Infrastructure.” 2013 Report Card for Americas Infrastructure. ASCE, n.d. Web. 28 July 2016.

“Envision.” Institute For Sustainable Infrastructure. N.p., n.d. Web. 28 July 2016.

People working at a table.

Discover Our Difference

We partner with our clients and communities to build what’s next in infrastructure – the places, spaces, and systems that support our lives.